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Deformation and burst of a liquid droplet 
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A theoretical method is presented for predicting the deformation and the 
conditions for breakup of a liquid droplet freely suspended in a general linear 
shear field. This is achieved by expanding the solution to the creeping-flow 
equations in powers of the deformation parameter e and using linear stability 
theory to determine the onset of bursting. When compared with numerical 
solutions and with the available experimental data, the theoretical results are 
generally found to be of acceptable accuracy although, in some cases, the 
agreement is only qualitative. 

1. Introduction 
It has become increasingly apparent in recent years that emulsions, whose 

striking physico-chemical properties have been the subject of numerous investi- 
gations for over a century, are also interesting from the fluid-mechanical point 
of view in that, when in motion, they often exhibit non-Newtonian effects 
even when the disperse phase is very dilute. In  fact, most of the more common 
rheological characteristics of non-Newtonian fluids, such as viscoelasticity, shear- 
dependent viscosity, normal stresses in rectilinear flow, etc., are also generally 
encountered in the flow of emulsions, with the result that the latter have been used 
sometimes as models for the study of a class of non-Newtonian substances and 
for the development of their appropriate constitutive equations. In  the case of 
emulsions which are being sheared, these non-Newtonian effects arise of course 
from the deformation of the individual droplets, and depend, quantitatively, on a 
number of parameters, a key one being, no doubt, the average size of these drops. 
Thus, it is important that more precise information regarding drop deformation 
and burst be obtained, not only because of its potential usefulness to a number 
of diverse areas in fluid mechanics, but also because such information is essential 
for the development of a theory that accurately describes the rheological 
behaviour of flowing emulsions. 

To be sure, the problem of determining theoretically the shape of a single 
droplet freely suspended in an unbounded incompressible liquid undergoing a 
shearing motion is very complex and no general solution is at present available. 
However, by considering only the case of a slightly non-spherical particle, 
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Taylor (1932, 1934) was able to show that, to a first approximation, the drop 
should deform into an ellipsoid. Taylor (1934) also investigated this phenomenon 
experimentally, and observed that his theoretical expression for the drop de- 
formation agreed with the experimental data only for small values of a non- 
dimensional shear rate. Furthermore, he found that the mode of burst of the 
particles depended on the type of shear flow generated in his apparatus and on the 
ratio h of the viscosity of the disperse phase to that of the suspending medium. 

Following Taylor’s pioneering work, numerous authors became interested in 
the subject. Of particular importance is the experimental work of Rumscheidt 
& Mason (1961), who studied the deformation and breakup of liquid droplets 
in hyperbolic and simple shear flows, and the theoretical analysis by Chaffey & 
Brenner (1967), who improved Taylor’s result by deriving a better approxima- 
tion for the drop shape in a steady simple shear flow. Recent developments on 
the subject are due to Cox (1969), to Torza, Cox & Mason (1972), who studied 
both theoretically and experimentally the influence of time effects on the de- 
formation and burst, and, finally, to Grace (1971), who conducted a thorough 
experimental investigation of these phenomena over the record-breaking range of 
A’s from to lo3. 

Unfortunately, although the more recent theories have extended the validity 
of Taylor’s original analysis to greater ranges of the shear rate, none of them, 
so far, has yielded a quantitative criterion for a drop breakup in a general shear 
flow. Indeed, the basic assumption common to all these theories is that the drop 
is almost spherical, in contrast to all the experimental observations of drops 
undergoing breakup, which clearly show that the deformation at  this point is 
large. Furthermore, apart from Cox’s (1969) equation, all other theoretical 
expressions for the drop shape were derived assuming a steady state, whereas 
the phenomenon of burst is inherently transient. 

It follows then, from these considerations, that time effects will have to be 
included in any complete description of this subject. As shown by (Jox (1969)’ 
this can be achieved in principle by constructing a solution in which the appro- 
priate variables are expanded in powers of e, a small parameter representing the 
tendency of the drop to deform. Cox then determined theoretically the transient 
response of a droplet freely suspended in a time-dependent simple shear or hyper- 
bolic flow, but, since his solution had been evaluated only to O(E), his results 
failed to indicate the possibility of particle breakup. 

It becomes necessary, therefore, to proceed on the basis of the more compli- 
cated analysis by Frankel & Acrivos (1970), as extended by Barthks-Biesel 
(1972), in which the expansion proposed by Cox was carried out to higher order 
in E. It will be seen that the resulting equation determining the drop shape, plus 
the use of linear stability theory do indeed lead to predictions for the breakup 
of droplets freely suspended in a linear shear field which are in relatively good 
agreement with the experimental findings by Taylor, by Rumscheidt & Mason, 
and by Grace. Before proceeding with this comparison, however, we wish to out- 
line briefly the main features of our approach. 

D.  Barthls-Biesel and A .  Acrivos 
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2. The method of analysis 
As is the case with all the previous studies referred to earlier, the Reynolds 

number of the motion is assumed small enough for inertia effects to be negligible. 
Then, as shown by Frankel & Acrivos (cf. their equations (2.1) and (2.10)), the 
equation for the surface of the drop in a system of axes moving with the centre 
of the particle can be represented by 

where r = (xlxz)* and where all position co-ordinates have been rendered dimen- 
sionless using the radius a of the equivalent spherical drop as the characteristic 
length. The Cartesian tensor notation and Einstein's summation convention 
have been adopted. Also, we shall consider here the case where the drop is kept 
nearly spherical on account of its Iarge surface tension with h being O(l ) ,  hence 
the small parameter B is defined as 

E = poGa/cr, 

where p0 is the viscosity of the suspending fluid, G is the magnitude of the shear 
rate and CT is the surface tension of the drop. 

The tensors qj and &ilrn are chosen to be symmetric with respect to any per- 
mutation of their indices and to have zero contraction. As shown by BarthBs- 
Biesel (1972), they obey the two differential equations 

e q j p  + &eW,(ei&$qj +€&) 

= a o e . .  21 +a1&j+e[a2Sd(ei&j) +a3fl4&8j)I 

+ e2{a4eij(4rn4rn) + 4j[a5(4rnelrn) +ac(4rn4rn)I 
+a~fJd(eil4rnFrnj) +4jlrn(ase~rn+a,~rn))+0(e3) (2 .2 )  

and e a q j l m / a t  = 60Ejlrn+ b1fJd4(eiJrn) + b2fJd4(F,j&) + O(e), (2 .3)  
where e i j  and wi are respectively the rate of strain and the vorticity of the free 
stream, rendered dimensionless using G, and t is a non-dimensional time. Also, 
the symmetric deviators of second- and fourth-order tensors are defined as 

and 

Sd,(Aijd) = +{Aijab +Aiabi + 22 other terms - 5[S,(Aij,, + Ailjl + 10 other terms) 

+ 5 other terms] + &( Sij S,, + Si, 8, j + Sib Sj,) (A,,, + Aldrn + Almrnl)), 

where Sij is the Kronecker delta. The coefficients a, and b, are known rational 
functions of h and are given in the appendix. 

It is evident of course that, if (2.1) is to be consistent with the order of ap- 
proximation of the perturbation expansion, it should contain the O(e3) terms as 
well, plus, in particular, a sixth-order tensor Fijzrnpq in addition to Fij and Fijlm. 
However, since neither the equation satisfied by this tensor Fijlrnpp nor the O(e) 
terms in (2.3) could be derived because of their complexity, (2.1) will be assumed 
from now on to represent exactly the equation for the surface. 

Sd(Ajj) = +(A, + Aj, - $S+jAlZ) 

1-2 
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In  the following, the full equations (2 .2 )  and (2 .3 )  will be termed the O(e2) 
theory or O(e2) results, whereas the relations obtained from (2 .2 )  with terms 
of O(e2) neglected (which, incidentally, is the non-dimensional form of equation 
(3.5) of Frankel & Acrivos (1970)) will be called the O(E)  theory or O(s) results. 
In  both cases, however, (2 .3 )  will be retained in its entirety as shown. 

The approach taken here will consist of assuming that (2 .1) ,  (2 .2)  and (2 .3)  
represent the exact solution to the full problem, and that they apply for all 
values of e, now being thought of as a measure of the shear rate for a given 
suspension, and for all values of A. Thus, this model will allow us to treat simul- 
taneously the two extreme cases of high surface tension or high viscosity drops. 

We begin by considering the steady-state shape of the drop for a constant 
shear field, which can be obtained by solving (2 .2 )  and (2 .3 )  with the time deri- 
vatives set equal to zero. Noting that (2 .3 )  can be solved immediately for qjzm 
in terms of eij and Fij, we have then, in lieu of (2 .2) ,  

- +ms(~islI$j +ejsZqi) + u o e i i + a l ~ j  + ~ [ a , S d ( e ~ , 4 ~ )  + a 3 S d ( & q j ) ]  

+e2{a4edj($m&m) + q j [ a 5 ( 4 m e Z m )  + a 6 ( q m 4 m ) l  

+a,Sd(e,Z~rn~~j)-b,'[b,Sd,(eij~rn) +b,fJd,(F,jE;m)I (aselm +agqm))  = 0. 

However, from the definition of a fourth-order symmetric deviator, it follows 
that 

Sd,(AijBZm) C,, = '+--Sd(Ai,CJrnBmj) + & A i j ( B ~ m G m )  

+ i$Bij(AZrnGrn) - & Q i j ( A z m B ~ m ) ,  

where use has been made of a tensorial identity established by Rivlin (1955). 
Thus, the steady-state equation becomes 

u,eij + a l e j  +e[a,Sd(ei&j) +a$d(&&j) - &~,(ei~&j+ej,~E;i)l 

-+ e2{eij[c1(4m4m) + cAe~rn4m)I + e j [ d 4 m 4 m )  +~4(e~rn4rn) + ~g(e~me~m)I 

+ c6Sd(ei1&rn Fmj) + qXd(e$leZm Fmj)> = O ,  (2.4) 

where 
3 ash c -_-- 39asb, 3 a,bl 

c1 = a,-356,--- '- 70 b, ' 14 b, ' 

54 a, b, c 4 =  a5-3 - - - - -  c 5 =  3 at361 , cg = a6---  
35 b, ' b, 70 6, ' 14 b, 

36asb, 18agb, 18asb1 c , = - - - - .  c 6 = a , + - - - - -  
7 b, 7 b, ' 7 bo 

The steady-state shape of the drop can then be obtained from (2 .4)  given A, 
e, and time-independent values for eij  and wi. Evidently, (2 .4) ,  being cubic in qi, 
may admit a multiplicity of solutions; indeed, it will be found, in most of the cases 
considered in this study, that the curves Fii versus e have a turning point similar 
to that shown on figure 1, thereby implying that the drop could attain at least 
two steady-state configurations for a given value of the shear rate. Nevertheless, 
i t  will be seen in all the subsequent examples that there exists a single solution to 
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(2.4) which is both stable and physically acceptable in the sense that the resulting 
expression for r as obtained from (2.1) is everywhere non-negative. 

The stability of the steady-state solutions will be systematically investigated 
by means of a conventional linear analysis in which, with the flow kept constant, 
small perturbations Flj  and Flilrn are superimposed upon the steady-state values 
Ej and zilm of the tensors, and are chosen such that 

F& < 1, F i j ,  4 1 

for all i, j, I and rn. Equations (2.2) and (2.3) then become, upon linearization, 

saFij/at = a, F i j  + E [  - +U~(E&& + ejSlFii) + a,Sd(e&.) + 2 ~ , S d ( & F ; ~ ) l  

+e2{Fim[(2a,eij+ 2 a ~ ~ j ) ~ ~ + u ~ ~ j e ~ m + u ~ ~ j ~ r n ]  

+a,fld(eil;”’,;”mj) + F;jlm(aeetm +aeqrn)) ( 2 . 5 ~ )  

and eaFijlm/at = b,,Fijlm+ b,Sd,(eijF&) +2b,Sd,(qjFim).  (2.5b) 

The problem is thus reduced to the solution of a linear system of first-order 
ordinary differential equations. For the steady state to be stable, the amplitudes 
of the disturbances Fii and F& must decay exponentially with time, which 
means that all the eigenvalues of the matrix of the system (2 .5)  must have nega- 
tive real parts. The stability analysis consists, therefore, of studying the signs of 
the eigenvalues of a real non-symmetric matrix. Although this is a formidable 
problem leading, in general, to long computations, for the special flows considered 
here, the dimensions of the different matrices do not exceed 8; hence, the well- 
known method of Routh was used with the characteristic polynomial of the 
matrix being computed by Leverrier’s algorithm. 

The choice of the values of E was guided by the results of the regular perturba- 
tion solution, from which it is known that, as E --f 0, there exists a stable steady- 
state shape given by qi = - (a,,/a,) e i j .  It is then natural to examine the exist- 
ence of solutions to (2.4) by increasing e, starting from E = 0. It will be found, in 
most cases to be investigated, that, when [el exceeds a critical value IeJCrlt, no 
steady-state solution exists and that, consequently, the droplet bursts. 

In  the following, the solutions for three particular shear flows will be ex- 
amined: an extensional flow, a hyperbolic flow and a simple shear flow, for which, 
as will be seen, the basic equations (2.2) and (2.3) simplify considerably. 

+ Flj [a&netm)  + a6(4m%)1 +a, Sd(ea4rnKj)  

3. Extensional flow 
Here, the undisturbed flow field is given by 

uz = - Gx,, u1 = - Gx,, u, = ~ G x , ,  

or, in dimensionless form, 

el ,  = eZ2 = -1 ,  e3, = 2, wi = 0. 

G can be either positive or negative and, correspondingly, e will take both signs. 
Hence, tlie drop is pulled either along the axis of revolution or along a ring in the 
xl, x2 plane, depending on whether, respectively, E is positive or negative. 
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Owing to the symmetry of the flow, it can be shown that the only real solution(s) 
of (2 .4)  must also be axisymmetric; consequently 

F11 = F,, = -4F33 = F. 
Thus, for an extensional flow, (2.4) reduces to a single equation: 

G c ~ E ~ F ~ - ~ [ ~ ~ + ~ ~ ( c , + c , + ~ c ~ ~ ) ] F ~ + { u , + ~ , E +  ~ E ~ ( c , + c ~ + & ) ) F - c A ~  = 0. (3.1) 

Since, in this particular case, the O(E) equation is quite tractable, it will be studied 
in detail in order to illustrate the method of analysis. 

3.1. The predictions of the O(E) theory 
TOO(€), ( 3 . i )  becomes 

a3€F2-(a,+a,€)F+fo = 0, 

where a, and u3 are always positive and a, always negative. This equation will 
have real solutions provided that its discriminant is positive or zero, i.e. 

from which it follows that 
(a ,+a2€)~-4aoa3s 2 0, 

E < { 2 a 0 ~ 3 - a 1 ~ 2 -  [4a0a3(a0a3-a,a,)]+]/a2,, (3.3) 

or > (2a,a3-a,a, f [4a,a3(aoa3-a,a,)]~}/a2,. (3.4) 

For values of h ranging from 0 to co, it was found that the limiting E’S were 
positive and of order 0.1 for (3.3), and 3-0 for (3.4). However, (3.4) will be ignored 
from now on because it gives rise to an unrealistic shape for the drop in which r,  
given by (2. l),  attains negative values. Besides, under normal experimental 
conditions, the initial state corresponds to E = 0,  and, as will be shown in the 
following, the drop bursts before the limit indicated by (3.4) can ever be reached. 

A critical value of E past which no steady state exists has therefore been pre- 
dieted: 

In  addition, when (3.3) is satisfied, two values of F are obtained for a given e :  

f&t = {2a@3-a,a,- [4aoa,(a,a,-a,a,)]~}/a2,. 

F* = {a1 + a,€ * [(a1 + a&-- 4aoa3€]+]/2a3€, 

of which the physically realistic one is selected on the basis of the linear stability 
analysis described earlier. Specifically, in view of (3 . i ) ,  the latter yields in this 
case three independent differential equations 

edF‘/dt = (a,  + €a2 - 2ea3F) F’, 

S d q , / d t  = (a, - €a2 + 2 m 3 q  Pi,, 
sdF;,/dt = (a, + is., - m3F) Pi3, 

the solutions to which will decay only if 

(3.5a) 

(3.5b) 

(3.5c) 



3 

2 

- F  

7 

. .  

. .  . .  . .  . .  

-- 

. .  . .  . .  
: :  . .  . :  . .  . .  . .  . .  
. .  

2 
I I 

FIGURE 1. Extensional flow: steady-state values of P for h = 0. 
0, exact numerical solution; - . . , unstable state. 

I 

Obviously p- never satisfies ( 3 . 5 a )  and can be immediately discarded, so that, 
the solution is unique. Similarly, F+ always satisfies ( 3 . 5 ~ ~ )  and ( 3 . 5 ~ )  since a, 
is negative. In  contrast, p+ satisfies (3 .5b)  only if E exceeds a critical value 

EGit = (2a,a3-a1u,- [(2a,a3-u1a,)2+3a~~~]B)/a~, 

which is real and negative for all values of A. Evidently, when 8 < E&, the 
instability results from the Fi2 disturbance. A curve of p+ versus E is plotted in 
figure 1 for h = 0. 

It has been shown then that, according to the O(E) theory, a stable physically 
realistic droplet shape cannot be attained in an extensional flow when the shear 
rate exceeds a certain critical value and that, consequently, the drop bursts. 
It is also of interest to remark at this point that one burst criterion provided 
by this analysis, namely E < qualitatively corresponds to that given by 
Taylor (1932),  who postulated that breakup would take place when the surface 
tension forces, tending to keep the drop in one piece, could no longer balance the 
viscous forces, tending to disrupt the particle. Specifically we note that, since the 
differential equations (2 .2 )  and (2 .3 )  as obtained from the perturbation method 
correspond to a normal stress balance at the interface, the left-hand side of (3 .1)  
or (3 .2)  represents the difference between the viscous force and surface tension 
force at the point where the surface of the drop intersects the x3 axis. From 
very simple algebraic considerations, it then follows that this quantity will 
always be positive when E is greater than which confirms Taylor’s hypo- 
thesis and shows that the drop will break when, at the point of maximum exten- 
sion, viscous forces exceed those arising from surface tension. 
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3.2. The predictions of the O(e2) theory 

The same procedure as that illustrated in 5 3.1 was followed here, the difference 
being that the various equations were studied numerically since no simple 
analytical solution is available for a cubic equation. In  particular (3.1) was 
solved by the Newton-Raphson method for various values of e and A. Again, 
the curves F versus E obtained for positive e showed clearly the existence of a 
critical e, which differed somewhat, but not significantly, from that predicted 
by the O(E) theory. In contrast, however, the trend of these curves for negative 
e was quite different in the sense that, whereas the O(e)  values of P increased 
steadily with e, the O(e2) curves were observed to have a turning point for some A’s 
similar to that for positive E. 

It was found numerically from the stability analysis that the upper parts 
of the curves F versus 6, for positive and negative values of e, are unstable 
and that again, when e is negative, instability is first caused by the Pi2 distur- 
bance. Thus, as with the O(E) theory, breakup in this latter case will be due to any 
small three-dimensional disturbance. 

3.3. Comparison with a numerical solution of the creeping-jbw equations 

At present there exist no experimental results regarding the deformation and 
burst of liquid droplets immersed in an elongational flow, owing to the technical 
problems encountered in the design of an apparatus to produce such a flow field. 
However, extensional flow does occur in nature, for example, when a liquid 
thread is pulled. At any rate, it  appears that the only results with which the pre- 
dictions of the theory can be compared are those obtained by Frankel & Acrivos 
(1970) from a numerical solution of the creeping-flow equations, at  steady state, 
for h = 0.7 Unfortunately, the numerical scheme used by these authors failed for 
values of e less than - 0.1 1 and greater than 0.08 probably owing to the fact that 
the elongated drop shape could no longer be represented by a converging series 
of surface spherical harmonics as required by their technique. Whether this 
failure indicates drop breakup is not clear at this point and further analysis is 
required. However, one can still make use of these numerical results for values 
of e ranging from - 0.1 1 to 0.08, in order to assess the accuracy of the perturba- 
tion analysis developed in the previous sections. In  particular, it is seen in figure 1, 
where the numerical values of F have also been plotted, that good agreement 
exists between the theoretical and the exact results. Thus it is to  be expected 
that the drop shapes predicted by the theory (whether it is the O ( E )  or the O(e2) ,  
since the two do not differ appreciably in this range of values of E )  will be very 
close to those computed from the numerical solution. 

t Recently, Buckmaster (1972,1973) also considered this problem for a range of A’s, and 
determined the droplet shape using slender-body theory. He showed that his solution is 
non-unique, which is in agreement with our findings, but otherwise his results differ quanti- 
tatively from ours. In particular, according to his solution, a steady shape, not necessary 
stable, exists for all positive 6, provided that h = 0. Evidently, this matter deserves further 
study. 
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F I G ~ E  2. Extensional flow: comparison between the analytical and numerical values of 
the deformation for A = 0. 0, numerical; ---, O(s); -, O(s2). 

The deformation D, of the particles, a quantity often measured by experi- 
mentalists, is, therefore, also studied here. As is customary, D, is defined by 

Df = (L  - B)/(L + B),  

where L and B are respectively the lengths of the major and minor axes of the 
deformed drop. In the present case, the equation for the surface of the particle 
stems readily from (2.1) and becomes in the xl, x3 plane 

2835 
a2F( - b, + b 2 F )  COB 44, 1 8bO 

399 
COS~$- -  

where $ is defined by 

The analytic expression for Df, 
x3 = rcos$, xl = rsinq5. 

399 
sF( - 6 ,  + b2F)]  

2 (3.6) 
s2P( - b, + b,P) 

891 3s 
2 2b, 

Of = 
l - - ( F + y E F z ) - -  

” 
thus follows easily. 

A comparison between the above values of Df and the corresponding numerical 
results is shown on figure 2. The agreement is again good, thereby tending to 
indicate that the shape of the drop is not very sensitive to small relative varia- 
tions in E ,  provided of course that E is less than €Aait or larger than Also, 
it is interesting to note that the O(s) results are slightly better than those 
of the O(s2) theory for negative B .  The difference is, however, not significant and 
may be due to the fact that, as explained earlier following (2.3), the O(s2) ex- 
pressiori for the shape does not contain all the relevant terms. 

I 
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0.0 
0.2 
0.5 
1.0 
2.0 
4-0 
7.0 

15.0 

0.115 
0.074 
0.058 
0.052 
0.045 
0.044 
0.043 
0.043 

none found 
- 0.27 
- 0.15 
- 0.13 
-0.13 
-0.13 
-0.13 
-0.13 

TABLE 1. Extensional flow. Critical 6 for various values of h 
(results from the O(8)  theory). 

The limited comparison between the theoretical and numerical results is 
therefore very encouraging, and indicates that the theory gives entirely satis- 
factory predictions in the range of values of E for which a stable drop shape is 
attained. Hence, the results obtained from the perturbation analysis for other 
values of h are also given here (in table I ) ,  because they might be of some use in 
estimating the maximum drop size that can be attained by viscous droplets 
freely suspended in this particular flow field. 

4. Hyperbolic flow 
This undisturbed flow is given here by 

ul = Gx,, u2 = - G x ~ ,  US = 0, 

or, in dimensionless form, by 

el, = -e22 = I, oi = 0, 

all other components of eii being zero. It then follows from (2.4) that the non- 
zero components of qi and qjlm are 

Fll? '22, '33, '1111, F1122, F2222, '1133, '2233, 4 3 3 3 7  

of which only five are independent on account of the requirement that the tensors 
have zero contraction. For reasons of symmetry, these are chosen to be 

s = Fll + '22, D = F11- F22,  4 1 2 2 ,  

x 1 1 1 1  = '1111+ '2222, D l 1 1 1  = F1111-  '222,. 

Thus, (2.4) reduces to a system of two nonlinear equations in the unknowns S 
and D,  

a, S + +€[a2 D - &a3( 3X2 - D2)]  + s2S[4c3( 3a2 + D2) + D(c4 + Qc6) + +c, + 2c5] = 0, 

( 4 . 1 ~ )  

(4.1 b)  

alD+2a,+cX(a2+a3D) +s2[$(2c1+c3D) ( 3 8 2 + 0 2 )  + c 4 D 2  

+ &&x2+ D2) + D(2c2 + C, + 2c5)] = 0, 
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which was solved numerically for various values of e .  Also, the stability equa- 
tions (2.5) decompose here into a 5 x 5 matrix P, corresponding to the non-zero 
steady-state elements of the tensors F, and three 3 x 3 matrices, corresponding 
to the other elements. 

4.1. The predictions of the theory 

The results from both the O(s) and O(e2) analysis will be summarized here, since 
they are qualitatively similar. Specifically, it was found numerically for values 
of the viscosity ratio ranging from 0 to 20t that a critical E past which the steady- 
state equations (4.1) had no physically acceptable solution existed in each case, 
thereby implying that the drop bursts. Also, the graphs Pll and FZ2 versus E 

were very similar to those shown on figure 1 for positive E ,  their lower branches 
being stable to all small disturbances and their upper branches unstable on 
account solely of the matrix P, which has some eigenvalues with a positive real 
part. 

4.2. Comparison with experimental data 
Three experimental studies of the deformation and burst of a liquid drop in a 
hyperbolic flow have been conducted, respectively, by Taylor (1934), by Rum- 
scheidt & Mason (1961) and by Grace (1971), who observed that breakup of the 
particle would generally occur when the rate of strain exceeded a certain limit. 

A comparison between the theoretical values of the deformation for h = 0, 
0.91 and 20 and Taylor’s experimental data reveals that, except for h = 0, the 
O(a)  curves are in better agreement with experiment than those computed from 
the O(s2) theory. In  contrast, as is apparent from figure 3, the O(e2) results follow 
more closely Rumscheidt & Mason’s experimental curve. Since there are some 
reasons for believing, however, that Taylor’s observations were not very accurate 
and that Rumscheidt & Mason’s data are more reliable, it would appear that the 
O(e2) theory is somewhat superior to the O ( E )  analysis. As shown in table 2, this 
latter conclusion is also supported by a comparison between the analytical values 
of ecrit and those given by Rumscheidt & Mason for h = 1 and h = 6. The experi- 
mentalvalue of ecritfor h = 0, as obtained from Grace’s work, suggests, however, 
that the present theory becomes inaccurate when h is small. Similarly, for h > 6, 
Grace’s results indicate that ecrit increases slowly with h (e.g. eCrit = 0.17 for 
h = 102), whereas, according to our analysis becomes approximately 0.08 
for h > 20. Thus, it would appear that the theory is satisfactory when h is 
O( l ) ,  i.e. when the true value of 

The drop profiles, as calculated from the O ( @ )  theory for values of E less than, 
but near ecrit, were found to be very similar to those reported by Rumscheidt & 
Mason for h = O( 1)  or larger, but unlike the pointed shapes which are observed 
experimentally for inviscid drops. This last fact should not be too surprising, 
though, since pointed ends can hardly be described by (2.1), in which only two 
harmonics have been retained. 

is still small. 

t For all practical purposes, a viscosity ratio of 20 can be assumed infinite since the 
various coefficients a, and c, have effectively reached their asymptotic values corresponding 
toh --f 03. 
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FIGURE 3. Hyperbolic flow: deformation of a drop. h = 6. - . - , unstable state; 
0, experiment, Rumscheidt & Mason (1961). 
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A O ( d  O ( @ )  Experimental 

0 0.195 0.253 0-5 
1.0 0.15 0.104 0.1 
6.0 0.14 0.096 0.11 

TABLE 2. Hyperbolic flow: burst criterion, 

5. Simple shear flow 
A simple shear flow in the xl, x2 plane will now be considered. Here 

ul = ~Gx,, u2 = u3 = 0, 

consequently, the non-dimensional rate of strain and vorticity become 

e12 = 1, w3 = -2, 

all other components being zero. From (2.4) it follows that the only non-zero 
components of the tensors Fij and qjlm are 

'129 4 1 ,  F229 F33, '1111, '12223 '1112, F22117 F1133, '2233, '12332 F3333, 

of which only eight are independent, owing t o  the requirement that both El  
and qRrn should have zero contraction. Hence, the solution was developed using 
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the eight independent variables 

F 1 2 ,  f l  = F l I + & ,  D = %--F22, F1122, 

fllll, = %11+ p22221 Dl111 = 4 1 1 1  - 4 2 2 2 9  

x 1 1 1 2  = 4 1 1 2  + F1222, 0 1 1 1 2  = F l l l 2  - F12229 

in terms of which (2.4) reduces to the system of three equations 

13 

a, s + *E[2a22i;, + a3(2F;2 - Q( 3x2 - D”}] + €2X[2C3{F4, + t( 3 8 2  + B”} 

a . , D + € ( 4 F l 2 + a 3 S D )  + € 2 D [ 2 C 3 { I q 2 + ~ ( 3 ~ 2 + D 2 ) ) + 2 C 4 F l 2 + ~ + 2 C 5 ]  = 0, (5.1b) 

a1F12++a,+s[S(~a2+a3F,2) -B] +e2[2{Fq2+&(3S2+B2)} ( ~ 1 + ~ 3 p 1 2 )  

+ 2 F 1 2 ( c 4  + $6) + &7 f 2c,] = 0, (5 .1a)  

+ P & ( 2 6 4  + C e )  + &6(f12 + 02) f F 1 2 ( 2 c 2  + c7 + %g)] = 0. ( 5 4  1 c )  

The above were solved numerically by a Newton-Raphson method extended to 
nonlinear systems, for various values of s increasing from zero. Also, the stability 
analysis of those steady-state solutions obtained from (5.1) was found to give rise 
to an 8 x 8 matrix P, corresponding to the non-zero elements of qj and Pijrm, 
and to a 6 x 6 matrix S, corresponding to the elements of the tensor F which are 
zero at  steady state. 

5.1. The predictions ofthe O(s) theory 

The O(s) theory has already been considered by Chaffey & Brenner (1967) from 
a point of view slightly different from the one adopted here, in that they used a 
method of successive approximations to solve the various equations. However, 
their results are not very different from those of the present approach. In  short, 
according to the O(s) theory the major axis of deformation of the drop will be 
first oriented at 45” relative to the x1 axis and then will tend to rotate towards 
the x1 axis as the rate of shear is increased. Also, for all values of the viscosity 
ratio, the deformation of the particle is a monotonically increasing function of s 
whose curvature is negative (as will be seen later, this is in disagreement with the 
experimental evidence, which shows a positive curvature for some values of A). 
Furthermore, the O(E)  theory predicts that viscous drops ( A  > 3.6) attain a 
stable limiting shape in which the major axis of the particle is aligned with the x, 
axis. 

It is interesting to note that, in contrast to the experimental observations, no 
critical e is found, i.e. the O(E)  theory predicts that the steady states of the 
droplet are stable to all small disturbances. This fact seems to be due to the 
stabilizing effect of the free-stream vorticity. 

5.2.  The predictions of the O(s2) analysis 

According to this analysis, drops of low viscosity ( A  < 0.1)  or of high viscosity 
( A  > 3.6) will behave essentially as predicted by the O(E) theory and their 
shapes will be stable to all small disturbances. In contrast, for particles of medium 
viscosity (0.1 < A < 3.6), a critical value of s past which (5.1) had no solution was 
found, thus indicating breakup of the drop. Also, the curves Fll, and F12versus 
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FIGURE 4. Simple shear: limiting shape of drop, as predicted by the 0(@) 
(a )  h = 1, E = 0.13. (b)  h = 6 4 ,  E = 0.05 and 0.5. 

theory. 

e have here a turning point which again, as in the case of extensional or hyper- 
bolic flow, demarcates the stable from the unstable part of the curve, the in- 
stability being due only to the matrix P. 

As should be expected, the O(c2) theory also indicates that, with increasing rate 
of shear, the droplet, which was first oriented at  4 5 O ,  will tend to rotate towards 
the x1 axis and to align itself with this axis when h is large. Some steady-state 
profiles of drops in the xl, x2 plane are shown in figures 4(a) and ( b ) .  Except for 
high values of A, these shapes have a ‘bump’ which does not seem realistic and 
which probably would have been removed if higher order tensors and a better 
approximation for Fijlm had been used in the computation ofr. 

5.3. Comparison with experimental data 

Since a simple shear flow is easy to reproduce in a laboratory, some experimental 
observations of the deformation and burst of liquid droplets are now available. 
In  particular, the results obtained by Rumscheidt & Mason (1961), by Torza 
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Limiting D, 
--A 7 

h Experimental Theoretical 

3-8 0.38 0-31 
6-4 0.28 0.20 

15.0 0.085 0.077 

TABLE 3. Simple shear. Limiting values of the deformation for high h. 

2 E  

FIGURE 5. Simple shear: deformation of a drop. h = 0. Experiment: 
A, Rumscheidt & Mason; 0, Taylor. 

et al. (1972) and by Grace (1971) will be used here to assess the validity of the 
theoretical model. 

It has been noted already by Chaffey & Brenner (1967) that the O(s) theory, 
when appliedto very viscous droplets, is in close agreement with the experimental 
observations. This is equally true for the 0(e2)  results, which will be compared 
below with the experimental findings and which, in this case, do not differ 
substantially from those obtained from the O(E) analysis. 

Shown in table 3 are the limiting deformations reported by Rumscheidt & 
Mason (1961), as well as those computed from our model, which were found to be 
in slightly better agreement with experiment than those derived by Taylor 
(1934). Similarly, there is good agreement between the theoretically and experi- 
mentally determined orientations of the particle for h = 6. However, this is not 
the case for h = 3-8 for reasons which, at present, cannot be explained. 

Shown in figure 5 is a corresponding comparison for the case h = 0, from which 
it is clear that the O(s)  predictions are somewhat superior to those arising from 
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FIGUFLE 6 .  Simple shear: deformation of D drop. h = 1. 
0, oxperiment, Rumscheidt & Mason. 
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FIGURE 7. Simple shear: variations of edt with A. Compmison 
with experiments of Torza et al. (1972) .  
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the O(e2) theory. Of more interest, however, are the results for values of h between 
0.1 and 3.6, since, as was said earlier, only the 0 ( e 2 )  theory predicts the experi- 
mentally observed drop breakup. Such a comparison between the theoretical and 
the experimental curves for deformation is shown in figure 5 for h = I, from 
which it is clear that, in describing the trend of the curve, the 0 ( e 2 )  theory repre- 
sents a considerable improvement over the O(s) analysis, although it indicates 
bursting of the drop at  a lower value of E than is found experimentally. This is one 
of the major drawbacks of the 0 ( e 2 )  results, namely that they are not in very 
good quantitative agreement with experimental data, although it is felt that 
they give a good qualitative picture of the phenomenon. 

versus h and is compared in figure 7 with the 
corresponding graph given by Torza et al. Again, agreement is achieved but only 
in a qualitative sense. Grace gives a similar graph, but with many more experi- 
mental points for small values of A. From those results, it  is possible to conclude 
that 

Finally, a plot was made of 

strongly depends on h when h < 0.1 and that 

Thus, as h goes to zero, increases rapidly and attains large values (e.g. 
-N 10 for h = 4 x In  contrast, the present theory indicates that no 

critical value of e exists where h is smaller than 0.1. Of course, this discrepancy 
between the theoretical predictions and the experimental evidence should not 
be too surprising, because the coefficients ai, b, or ci, appearing in the theoretical 
expressions, are all well-behaved rational functions of h which tend to a finite 
limits as A + 0. Thus, the experimentally observed relation between and 
h cannot be predicted analytically. Furthermore, since the theory results from 
the truncation on an infinite power series, in E ,  it  should be hardly expected to 
predict reliable values of s larger than unity, such as those found experimentally 
forh < 0.1. 

6. Discussion 
It should be noted here that, since the surface of the drop is assumed to be 

represented exactly by (2.1), the volume of the drop remains constant to O(s2) 
only. Thus, a simple, but not very sensitive test of the validity of the theory 
presented earlier consists of evaluating the volume V of the particle, defined by 

where r is given by (2.1), dQ is an element of a solid angle and X is the surface of 
the drop. 

Shown in tables P 6  are the computed values of V very near the critical point 
for, respectively, simple shear, hyperbolic and extensional flows. As is apparent, 
droplets of low viscosity (i.e. h < 0.3) can expand by as much as 11 yo in the worst 
case (extensional flow, h = 0-2, e = - 0.26), while the change in volume of viscous 
drops is quite small and at  most of order 4 %. It has been shown, however, by 

2 F L M  
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h E V 

0 
0 
0 
0.14 
1.0 
2.2 
4.0 

17.0 

0.15 
0-3 
0.5 
0.24 
0.13 
0- 15 
0.5 
0.5 

1,0055 
1.051 
1.118 
1.064 
1.012 
1.012 
1.038 
1.003 

TABLE 4. Simple shear: volume of the drop at the point of breakup. 
O(@) theory. 

h 8 T7 

0 0.25 1.103 
1.0 0.1 1.004 
6.0 0.09 1.003 

20.0 0.08 1.002 

TABLE 5. Hyperbolic flow: volume of the drop a t  the point of breakup. 
O(@) theory. 

h 6 V 

0 0-115 
- 0.24 

0-2 0-0725 
- 0.26 

0.5 0.0575 
- 0.14 

1.0 0.05 
-0-12 

4.0 0.04 
-0.12 

15.0 0.04 
-0.12 

1-086 
1.067 

1-037 
1.114 

1.007 
1.017 

1.005 
1.011 

1.002 
1.012 

1.002 
1.012 

TABLE 6. Extensional flow: volume of the drop at the point, of breakup. 
O(e2) theory. 

BarthBs-Biesel (1972) that there exists, at  steady state, a one-to-one correspon- 
dence between the incompressible and compressible cases with the ratio of the 
appropriate B'S being V i .  Thus, since for all the examples considered Y i  was 
found to lie between 1.0 and 1-03, it follows that the value of is not signifi- 
cantly affected by this change of volume, and that the calculated burst criterion 
is, approximately, still within the range of validity of the present theory. 

Finally, in order to ensure that when I E J  exceeds lecrit) our theory would 
predict drop breakup, the transient deformations of the particle were also 
studied in the case I E ~  > leCritl when, initially, Ptj and qjlm were given values 
corresponding to those of a known steady shape which exists when is near but 
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FIGURE 8. Simple shear: burst of a drop, as predicted by the O ( @ )  theory. 
h = I ,  E = 0.15. 

smaller than (eCritl. Thus, (2.2) and (2.3) were solved as an initial-value problem, 
using the Kutta-Merson single-step technique. 

Unfortunately, when the shear rate exceeded its critical value, the results of 
the transient analysis indicated that, as a result of the truncation error introduced 
in (2.1), the increase in the volume of the drop could become significant. For 
example, the value of T‘ at bursting varied from 1.088 (hyperbolic flow, h = 6, 
E = 0.11) to 1-99 (simple shear, h = 2-2, E = 0.2). Consequently, the transient 
behaviour of the particle, as predicted by this theory, is at  best only of qualitative 
value. 

We shall now summarize the results that were obtained in the course of this 
study from both the steady-state and transient solutions. 

For a simple shear flow, the 0(e2)  relations describe correctly the behaviour of 
very viscous drops ( A  > 3.6). However, the O(B)  equations fail to predict the 
experimentally observed breakup of the drop for h less than 3.6. In  contrast, the 
O(c2) theory gives a good qualitative description of this phenomenon, since for 
h ranging between 0.1 and 3.6, it yields a burst criterion, although it does not 
predict the bursting of drops of low viscosity which is found to occur at high 
values of c .  Unfortunately, the theoretically computed critical rates of shear 
and the corresponding deformations are systematically smaller than those 
observed experimentally. 

For values of the rate of shear in excess of the critical 8, a transient analysis 
of the drop shape indicates that the deformation of the particle accelerates with 
time and that bursting is preceded by a pinching of the middle of the drop as 
shown in figure 8. This is in agreement with the latest experimental observations 
of Torza et al., although the experimentally attained deformations of the particle 
were larger than those found here theoretically. 

For a plane hyperbolic flow, a limiting value of the rate of shear, past which 
2-2 
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no steady state exists, is predicted by both the O(e) and the O(e2) equations for 
all values of A. This theoretical burst criterion is in good quantitative agreement 
with that observed experimentally by Rumscheidt & Mason for viscous drops, 
the O(e2) results being slightly better than the O(E)  ones. However, the mode of 
burst reported by Taylor or by Rumscheidt & Mason differs from that predicted 
by the transient theoretical analysis. Specifically, experimental evidence shows 
that the drop is pulled into a thread or develops pointed ends, whereas the theory 
indicates that the particle necks in the middle. This discrepancy can be attributed 
to the use of (2.1) to represent the shape of the drop. 

In  the case of an elongational flow, a critical rate of shear is again provided by 
either the O(s) or the O(e2) theories, from which it appears that the viscous drops 
are the easiest to break. Moreover, a comparison with some numerical results for 
h = 0 shows that the theory gives a good quantitative picture of the phenomenon. 
However, it was not found possible to compare the theoretical mode of burst, in 
which the particle necks in the middle, with the actual one, since the scheme 
for numerically solving the full creeping-flow equations was developed for 
steady state, and failed before a clearly defhed critical shear rate could be 
reached. In  view of the results obtained for hyperbolic flow, however, it might 
be expected that the theoretical mode of burst might not be veryrealistic for 
elongational flow either. 

It is interesting to note that, according to the present theory, the drop will burst 
on account of three-dimensional disturbances when pulled along a ring (G < 0). 

To conclude, then, we have shown that our analysis predicts the existence of a 
maximum shear rate beyond which a drop of known size, freely suspended in a 
linear shear field, is expected to burst. Of course, the agreement between the 
theoretical predictions and the experimental observations was found, at  times, 
to be only qualitative, yet, considering all the rather drastic simplifications 
that went into the development of the theory, even this limited agreement is 
gratifying. Thus, it would appear that the analysis described in this paper could 
be used in the future with some confidence to estimate the critical value of the 
non-dimensional shear rate E ,  and thereby infer some key properties of flowing 
emulsions (e.g. the maximum size of the droplets), when the viscosity ratio of 
the two phases is O(l ) ,  for the case of general shear flows where no experimental 
studies of droplet breakup are at  present available. 

The present work was supported in part by a grant from the National Science 
Foundation, and by grant NASA-NgR-05-020-420. 

Appendix 
The coefficients at and bi are all rational functions of h a.nd, a.s shown by 

Barthbs-Biesel (1972), are given by 

a. = 5/3(2h + 3), 

a, = -4O(h+l)/(2A+3)(19h+16), 

a2 = 10(4h- 9)/7(2A + 3)2, 
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a3 = 288( 137h3 + 624h2 + 741h + 248)/7(2h + 3)2 (19h + 16)2, 

2(11 172h4+ 18336A3+ 17440h2+3499h-7572) 
49(2h + 3)3 (19h + 16) 

a4 = - 

2(h- 1) (22344h3+52 768h2+45532h+ 19356) 
49(2h + 3)3 (19h + 16) 

a5 = - 

a, = - 48P(h)/49(2h + 3)3 (19h + 16)3 (lOh + 11) (17h + 16), 

9 

a, = 48(h- 1) (2793h3+7961h2+8474h+3522)/49(2h+3)3(19h+ 16), 

a8 = - 400(43h2 + 79h + 53)/3(2h + 3)2 (19h + 16), 

as = 80&(h)/(2h+3)2(19h+16)2(10h+ ll)(17h+16), 
where 

P(h) = 2 127976h'- 16341 920h'-38494964h5+122942551h4+474068311h3 

+591 515680h2+332 123 136h+ 71 700480, 

&(A) = 405 260h5 + 2 366 960h4 + 9 142 173h3+ 8 595 967h2 + 3 334 160h 

+ 693 760. 
Also b, = - 360(h + 1)/( 17h + 16) (1Oh + 1 l), 

b, = 1/7(2h+3), 

b -  
16(- 14h3+207ha+431h+ 192) 

- 2 1 (2h + 3) (19h + 16) (1 7h + 16) (lOh + 11) ' 
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